যদি \(sin\theta=\cfrac{a^2-b^2}{a^2+b^2}\) হয়, তবে দেখাও যে,\(cot\theta=\cfrac{2ab}{a^2-b^2}\) ।
Loading content...

\(sin\theta=\cfrac{a^2-b^2}{a^2+b^2}\)
বা,\(sin^2 \theta=\left(\cfrac{a^2-b^2}{a^2+b^2}\right)^2 \)
বা,\(sin^2 \theta=\cfrac{(a^2-b^2)^2}{(a^2+b^2)^2} \)
বা, \(cosec^2\theta=\cfrac{(a^2+b^2)^2}{(a^2-b^2)^2}\)
বা, \(cosec^2\theta-1=\cfrac{(a^2+b^2)^2}{(a^2-b^2)^2}-1\)
বা, \(cot^2 \theta=\cfrac{(a^2+b^2)^2-(a^2-b^2)^2}{(a^2-b^2)^2}\)
বা, \(cot^2 \theta=\cfrac{4a^2b^2}{(a^2-b^2)^2}\)
বা, \(cot \theta=\sqrt{\cfrac{4a^2b^2}{(a^2-b^2)^2}}\)
বা, \(cot \theta=\cfrac{2ab}{a^2-b^2}\) [প্রমাণিত]

🚫 Don't Click. Ad Inside 😈

Similar Questions