\(\cfrac{a}{1-a}+\cfrac{b}{1-b}+\cfrac{c}{1-c}=1\) হলে,\(\cfrac{1}{1-a}+\cfrac{1}{1-b}+\cfrac{1}{1-c}=\) কত?
Loading content...
\(\cfrac{a}{1-a}+\cfrac{b}{1-b}+\cfrac{c}{1-c} = 1\)
বা, \(\cfrac{a}{1-a}+1+\cfrac{b}{1-b}+1+\cfrac{c}{1-c}+1 \) \(= 1+1+1+1\)
বা, \(\cfrac{a+1-a}{1-a}+\cfrac{b+1-b}{1-b}+\cfrac{c+1-c}{1-c}= 4\)
বা, \(\cfrac{1}{1-a}+\cfrac{1}{1-b}+\cfrac{1}{1-c}= 4\)
🚫 Don't Click. Ad Inside 😈